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Abstract. In this expository note, we review the proof [AMSS19] of conjectures of Bump,
Nakasuji, and Naruse about principal series representations of p-adic groups. The ingre-
dients of the proof involve Maulik–Okounkov K-theoretic stable basis for the Springer
resolution, and motivic Chern classes of Schubert cells for the Langlands dual group
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1. Introduction

The Iwahori–Hecke algebra of a p-adic reductive group is the convolution algebra on
the compactly supported functions on the rational points of the group, which are left and
right invariant under the Iwahori subgroup. It contains the finite Hecke algebra and the
group algebra of the character lattice of the complex dual maximal torus, which is called the
lattice part of the Iwahori–Hecke algebra. The Iwahori invariant subspace of any unramified
principal series representation is a module over the Iwahori–Hecke algebra via convolution.
In the invariant subspace, there is a natural basis induced by the cell decomposition of
the group. The elements in this basis are just characteristic functions of the cells. If the
unramified character is regular, then the invariant subspace is a regular representation of
the finite Hecke algebra, and this basis is the standard basis. However, this basis does
not behave well under the intertwiners, making it difficult to compute the corresponding
Iwahori–Whittaker functions.

In Casselman’s study of unramified principal series [Cas80], he introduced another basis,
which is called the Casselman basis now, in the Iwahori invariant subspace. The Casselman
basis enjoys many good properties. For example, this is an eigenbasis for the lattice part
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in the Iwahori–Hecke algebra, and it interacts nicely with the intertwiners. Using this
new basis, Casselman proved Macdonald’s formula for the spherical function [Mac68], and
he also established the formula for the spherical Whittaker function with Shalika [CS80],
which is called the Casselman–Shalika formula. Moreover, there are simple formulas for the
Whittaker function for the Casselman basis elements [Ree93].

Therefore, to compute the Iwahori–Whittaker functions, we only need to know the tran-
sition matrix between these two bases. Special entries of this matrix can be deduced from
the Gindikin–Karpelevich formula proved by Langlands [Lan71] in the p-adic setting. Mo-
tivated by this formula, Bump and Nakasuji [BN11, BN19] proposed two conjectures about
certain matrix coefficients assuming the Dynkin diagram of the group is simply laced. One
of them is about the factorization property, while the other one is about the analyticity
property of the coefficients. On the other hand, Nakasuji and Naruse [NN16] use Yang–
Baxter basis to give a combinatorial formula for every entry of this matrix. However, the
formula is too complicated, and we do not know how to use it to prove the conjectures of
Bump and Nakasuji.

The difficulty in the factorization conjecture lies in the fact that the condition in the
conjecture is about the triviality of certain Kazhdan–Lusztig polynomials [KL79], which
is quite hard to work with combinatorially. However, if the Dynkin diagram is simply
laced, it is well known that the triviality of a Kazhdan–Lusztig polynomial is equivalent
to the condition that the Schubert variety in the complex dual flag manifold is smooth at
certain torus fixed point [BL00]. Based on this observation, Naruse refined the factorization
conjecture, so that the refined conjecture can be thought of as a smoothness criterion for
the Schubert varieties using p-adic representations. In Naruse’s refinement, the Dynkin
diagram of the group is no longer assumed to be simply laced, and it is an if and only if
statement. One of the directions was claimed by Naruse [Nar14].

In this refined factorization conjecture, one side is about p-adic representations, while
the other side is about Schubert varieties for the complex dual groups. The connection
between these two sides is well studied in geometric representation theory. For example,
Kazhdan and Lusztig used equivariant K-theory to prove the Deligne–Langlands conjecture
[KL87]. Recall the Iwahori–Hecke algebra is defined as certain functions on the p-adic group.
Kazhdan and Lusztig gave another geometric realization of the Iwahori–Hecke algebra via
the equivariant K-theory of the Steinberg variety, which is a convolution algebra, see also
[CG09]. Moreover, these are categorified by R. Bezrukavnikov in [Bez16].

The proof in [AMSS19] can be thought of as a shadow of these two geometric realizations
of the Iwahori–Hecke algebra. To be more specific, the strategy is to consider two geometric
realizations of the regular representation of the finite Hecke algebra. On one hand, we have
the Iwahori invariants of a regular unramified principal series representation. On the other
hand, we have the (specialized) equivariant K-theory of the flag variety for the complex dual
group, on which the lattice part subalgebra in the Iwahori–Hecka algebra acts by tensoring
by line bundles on the flag variety. By the localization theorem in equivariant K-theory,
there is a natural basis in the localized equivariant K-theory of the flag variety–the structure
sheaf of the fixed points, and it is immediate to see that they form an eigenbasis for the
lattice part of the Iwahori–Hecke algebra. Thus, they correspond to the Casselman basis.

The other basis in the equivariant K-theory corresponding to the standard basis in the
p-adic side is called the (dual) motivic Chern classes of the Schubert cells. To generalize
the Chern–Schwartz–MacPherson classes for singular varieties in homology [Mac74, Sch65a,
Sch65b], Brasselet, Schürmann and Yokura [BSY10] introduce motivic Chern classes in K-
theory. See [AMSS19, FRW21] for the equivariant case. The motivic Chern classes of the
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Schubert cells form another basis in the equivariant K-theory of the flag variety. Under the
above two geometric realizations of the regular representation of the finite Hecke algebra,
the standard basis corresponds to the (dual) motivic Chern classes.

Via these correspondences, we can use the equivariant K-theory of the flag variety to give
a geometric interpretation of the transition matrix coefficients on the p-adic side. I.e., the
coefficients are related to the localization of the motivic Chern classes of the Schubert cells.
Finally, the factorization conjecture follows since the motivic Chern classes of Schubert cells
contain information about the singularity of the Schubert varieties by its very definition. To
be more specific, Kumar [Kum96] has a smoothness criterion for the Schubert varieties using
the localization of the Schubert classes in the equivariant cohomology of the flag variety.
We generalize it using the localization of the motivic Chern classes.

The analyticity conjecture is proved by proving an analog of it on the flag variety side,
which follows from a GKM type argument.

This note is structured as follows. In Section 2, we introduce the objects in the p-adic
side: the Iwahori invariant subspace, the two bases, and conjectures of Bump, Nakasuji,
and Naruse. In Section 3, we introduce the motivic Chern classes in the complex dual side.
Lastly, we sketch the proof of the conjectures in Section 4.

Acknowledgments. The author thanks the organizers of the 8th International Congress
of Chinese Mathematicians for the invitation to speak. He also thanks his advisor Prof.
Andrei Okounkov for guidance, and Paolo Aluffi, Leonardo C. Mihalcea, Jörg Schürmann,
Gufang Zhao, and Changlong Zhong for collaborations. The author thanks the anonymous
referees for useful suggestions.

Notation. Let F be a non-Archimedean local field, with ring of integers OF , uniformizer
$ ∈ OF , and residue field Fq. Examples are finite extensions of the field of p-adic numbers
Qp, or of the field of Laurent series over Fp. Let G be a split reductive group defined over
OF . Let B = TN be a Borel subgroup containing a maximal torus T and its unipotent
radical N . Let R+ denote the roots in B. We will use α, β (resp. α∨, β∨) to denote roots
(resp. coroots), and use α > 0 to denote α ∈ R+. Let W be the Weyl group, and ≤ denote
the Burhat order on it. Let w0 be the longest element in the Weyl group W .

Let T∨ ⊂ B∨ ⊂ G∨ be the complex Langlands dual groups, and B∨,− be the opposite
Borel subgroup. Let B denote the flag variety G∨/B∨. For any w ∈ W , let X(w)◦ :=
B∨wB∨/B∨ ⊂ G∨/B∨ and Y (w)◦ := B∨,−wB∨/B∨ ⊂ G∨/B∨ be the (opposite) Schubert
cells, with closures denoted by X(w) and Y (w), respectively. Let X∗(T∨) = X∗(T ) be the
group of characters of T∨ (=the group of cocharacters of T ), and X∗(T

∨) = X∗(T ) be the
group of cocharacters of T∨ (= the group of characters of T ). For any λ ∈ X∗(T∨), let
Lλ := G∨ ×B∨ Cλ denote the line bundle over the flag variety B.

2. p-adic side

In this section, we introduce two bases in the Iwahori invariants of the principal series
representations of a split reductive p-adic group G, and state the conjectures of Bump,
Nakasuji, and Naruse about the transition matrix coefficients between these two bases.

2.1. Iwahori invariants of the principal series representations. In this section, we
introduce the unramified principal series representation.

Let G(F ) be the F -points of G, and similarly for the maximal torus T (F ) and Borel
subgroup B(F ) = T (F )N(F ). Let I be an Iwahori subgroup, i.e., the inverse image of
B(Fq) under the natural map G(OF )→ G(Fq).
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Let H = Cc[I\G(F )/I] be the Iwahori–Hecke algebra, consisting of compactly supported
functions on G(F ) which are bi-invariant under I. As a vector space, H = Θ ⊗C HW (q),
where Θ is a commutative subalgebra isomorphic to the coordinate ring C[T∨] of the complex
dual torus T∨ := C∗ ⊗ X∗(T ), and where HW (q) is the finite Hecke (sub)algebra with
parameter q associated to the finite Weyl group W . The finite Hecke algebra HW (q) is also
a subalgebra of H, and it is generated by elements Tw (w ∈ W ) such that the following
relations hold: TuTv = Tuv if `(uv) = `(u) + `(v), and (Tsi + 1)(Tsi − q) = 0 for a simple
reflection si in W .

For any character τ of T , and α∨ a coroot define eα
∨

by eα
∨
(τ) = τ(hα∨($)), where

hα∨ : F× → T (F ) is the one parameter subgroup. There is a pairing

〈·, ·〉 : T (F )/T (OF )× T∨ → C∗

given by 〈a, z⊗λ〉 = zval(λ(a)). This induces an isomorphism between T (F )/T (OF ) and the
group X∗(T∨) of rational characters of T∨. It also induces an identification between T∨

and unramified characters of T (F ), i.e., characters which are trivial on T (O).
From now on we take τ to be an unramified character of T (F ) such that eα(τ) 6= 1 for

all coroots α, and for which the stabilizer Wτ = 1. The principal series representation is

the induced representation I(τ) := Ind
G(F )
B(F )(τ). As a C-vector space, I(τ) consists of locally

constant functions f on G(F ) such that f(bg) = τ(b)δ
1
2 (b)f(g) for any b ∈ B(F ), where

δ(b) :=
∏
α>0 |α∨(b)|F is the modulus function on the Borel subgroup. The group G(F ) acts

by the formula (π(g)f)(h) = f(hg), where g, h ∈ G(F ) and f ∈ I(τ). The Iwahori–Hecke
algebra H acts through convolution from the right on the Iwahori invariant subspace I(τ)I

as follows:

(f ? h)(g) :=

∫
G(F )

f(gx−1)h(x)dx,

where f ∈ I(τ)I and h ∈ H. The restriction of this action to HW (q) is a regular representa-
tion. One can pass back and forth between left and right H-modules by using the standard
anti-involution ι on H given by ι(h)(x) = h(x−1), where h ∈ H and x ∈ G(F ). For any
w ∈ W , ι(Tw) = Tw−1 and ι(q) = q, see [HKP10, Section 3.2]. We use π to denote this left
action of H on I(τ)I .

2.2. Two bases in the Iwahori invariants of the principal series representations.
In this section, we recall the definitions and properties of the two bases in I(τ)I .

From the decomposition G(F ) =
⊔
w∈W B(F )wI, one obtains the basis of the character-

istic functions on the orbits, denoted by {ϕw | w ∈ W}1. For w ∈ W , the element ϕw is
characterized by the two conditions: [Ree92, pg. 319]:

(1) ϕw is supported on B(F )wI;

(2) ϕw(bwg) = τ(b)δ
1
2 (b) for any b ∈ B(F ) and g ∈ I.

The left action of H on I(τ)I was calculated by Casselman in [Cas80, Thm. 3.4] as follows.
For any simple coroot α∨i :

(1) π(Tsi)(ϕw) =

{
qϕwsi + (q − 1)ϕw if wsi < w;

ϕwsi if wsi > w.

The second basis, called Casselman’s basis, and denoted by {fw | w ∈ W}, was defined
by Casselman [Cas80, §3] by duality using certain intertwiner operators. For any character
τ and x ∈ W , define xτ ∈ X∗(T ) by the formula xτ(a) := τ(x−1ax) for any a ∈ T .
Since τ is unramified and it has trivial stabilizer under the Weyl group action, the space

1Our ϕw is equal to φw−1 in [BN11, BN19]
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HomG(F )(I(τ), I(x−1τ)) is known to be one dimensional, spanned by an operator Ax = Aτx
2 defined by

Ax(ϕ)(g) :=

∫
Nx

ϕ(ẋng)dn,

where ẋ is a representative of x ∈W , Nx = N(F )∩ ẋ−1N−(F )ẋ where N− is the unipotent
radical of the opposite Borel subgroup B−; the measure onNx is normalized by the condition

that Vol(Nx∩G(OF )) = 1 [Ree92]. If x, y ∈W satisfy `(x)+`(y) = `(xy), then Ax−1τ
y Aτx =

Aτxy. Then there exist unique functions fw ∈ I(τ)I such that

(2) Aτx(fw)(1) = δx,w.

(Again under our conventions, the fw is denoted by fw−1 in [BN11].) For the longest element
w0 in the Weyl group, Casselman showed in [Cas80, Prop. 3.7] that

ϕw0 = fw0 .

Reeder [Ree92] calculated the action of H on the functions fw: he showed in [Ree92, Lemma
4.1] that the functions fw are Θ-eigenvectors, and he calculated in [Ree92, Prop. 4.9] the
action of HW (q). To describe the latter, for any coroot α∨, let

cα∨ =
1− q−1eα∨(τ)

1− eα∨(τ)
.

For any simple coroot α∨i and w ∈W , write

Ji,w =

{
cw(α∨i )c−w(α∨i ) if wsi > w;

1 if wsi < w.

Then, we have

(3) π(Tsi)(fw) = q(1− cw(α∨i ))fw + qJi,wfwsi .

2.3. Conjectures of Bump, Nakasuji, and Naruse. It is an interesting problem to
study the transition matrix coefficients between the bases {ϕw} and {fw}. On one hand,
this will generalize the Gindikin–Karpelevich formula, see Equation (4) below. On the
other hand, the Whittaker function associated with the Casselman basis was computed
by Reeder [Ree93]. Thus, knowing the transition matrix will enable us to compute the
Iwahori-Whittaker functions, see [BBBG19, MSA19] for some other interpretations of these
functions.

In this section, we state conjectures of Bump, Nakasuji, and Naruse, regarding factoriza-
tion and analyticity properties of the transition matrix coefficients between the bases {ϕw}
and {fw}.

We follow mainly [BN11], and we recall that we use opposite notations from those in
loc.cit: our ϕw and fw are φw−1 and fw−1 respectively in [BN11]. Let

φu :=
∑
u≤w

ϕw ∈ I(τ)I ,

and consider the expansion in terms of the Casselman’s basis:

φu =
∑
w

mu,wfw.

Then by the definition of fw, mu,w = Aw(φu)(1). It is also easy to see that mu,w = 0 unless
u ≤ w, see [BN11, Theorem 3.5].

2The intertwiner Ax is related to Mx from [Cas80, BN11] by the formula Ax = Mx−1 .
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When u = id, φid is the spherical vector in I(τ), i.e. the vector fixed by the maximal
compact subgroup G(OF ), and

(4) Aw(φid)(1) = mid,w =
∏

α>0,sαw<w

1− q−1eα∨(τ)

1− eα∨(τ)
.

This is the Gindikin–Karpelevich formula, which in the non-Archimedean setting was proved
by Langlands [Lan71] after Gindikin and Karpelevich proved a similar statement for real
groups. Casselman gave another proof using his basis fw, and this plays a crucial role in
his computation of Macdonald formula and the spherical Whittaker functions, see [Cas80,
CS80]. See also [SZZ20] for an approach using the stable basis and the equivariant K-theory
of the cotangent bundle T ∗(G∨/B∨).

2.3.1. The factorization conjecture. For any u ≤ w ∈W , let

S(u,w) := {β ∈ R+|u ≤ sβw < w}.
Based on Equation (4), Bump and Nakasuji made the following conjecture [BN11, BN19].

Theorem 2.1 (Bump–Nakasuji conjecture). Assume the Dynkin diagram of G is simply
laced. For any u ≤ w ∈W , then

mu,w =
∏

α∈S(u,w)

1− q−1eα∨(τ)

1− eα∨(τ)
,

if the Kazhdan–Lusztig polynomial

Pw0w−1,w0u−1(q) = 1.

For any finite simple root system (not necessarily simply laced), it is easy to see that
Pw0w−1,w0u−1(q) = 1 if and only if Pw0w,w0u(q) = 1 (see [AMSS19, Corollary 9.6]). If the
Dynkin diagram of G is simply laced, then Pw0w,w0u(q) = 1 is equivalent to the condition

that the opposite Schubert variety Y (u) := B∨,−uB∨/B∨ in the dual complex flag manifold
G∨/B∨ is smooth at the torus fixed point wB∨ ∈ G∨/B∨ [BL00]. Based on this observation,
Naruse [Nar14] refined the Bump–Nakasuji conjecture as follows.

Theorem 2.2 (Bump–Nakasuji–Naruse factorization Conjecture). For any u ≤ w ∈W ,

mu,w =
∏

α∈S(u,w)

1− q−1eα∨(τ)

1− eα∨(τ)
,

if and only if the opposite Schubert variety Y (u) in the dual complex flag manifold G∨/B∨

is smooth at the torus fixed point wB∨.

Thus, in this refined conjecture, the Dynkin diagram of G is not necessarily simply laced,
and it is an if and only if statement. The original conjecture follows from this refined one.
The “if” direction was claimed by Naruse in [Nar14].

2.3.2. The analyticity conjecture. Consider the expansion

ϕu :=
∑
w

ru,wfw ∈ I(τ)I .

Then by definition,

(5) ru,w :=
∑

u≤x≤w
(−1)`(x)−`(u)mx,w.
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These two sets of matrix coefficients ru,w and mu,w depend on the unramified character τ ,
which can be thought of as a point in the complex dual torus T∨. Thus, ru,w and mu,w can
be regarded as functions on T∨, and it is easy to see that they are rational functions on T∨.
Theorem 2.2 implies that ∏

α∈S(u,w)

(1− eα∨)mu,w

are analytic functions on T∨ (i.e., having no poles) if the condition in the Theorem is
satisfied.

In general, Bump and Nakasuji made the following conjecture, see [BN19, Conjecture 1].

Theorem 2.3 (Analyticity conjecture). Let u ≤ w be two Weyl group elements. Then the
functions ∏

α∈S(u,w)

(1− eα∨)ru,w ,
∏

α∈S(u,w)

(1− eα∨)mu,w

are analytic on the complex dual torus T∨.

The goal of this short note is to sketch the proofs of Theorem 2.2 and Theorem 2.3.

3. Complex dual side

The idea of the proof of the above conjectures is to give a geometric meaning, in the
Langlands dual side, of the matrix coefficients mu,w. In this section, we work over the com-
plex numbers C, and introduce the motivic Chern classes. We give a smoothness criterion
for the Schubert varieties using the motivic Chern classes.

3.1. Definition of Motivic Chern classes. In this section, we give the definition of
the motivic Chern classes, which is a K-theoretic generalization of the Chern–Schwartz–
MacPherson classes in homology [Mac74, Sch65a, Sch65b]. The main references for this
subsection are [AMSS19, FRW21].

Let X be a quasi-projective, non-singular, complex algebraic variety, with an action of
the torus T∨. Let KT∨(X) := K0(CohT∨(X)) be the T∨-equivariant K-theory of X, where
CohT∨(X) is the abelian category of T∨-equivariant coherent sheaves on X (see [CG09]
for a good reference for equivariant K-theory). By definition, the equivariant K-group of a
point is

KT∨(pt) = K0(CohT∨(pt)) = Rep(T∨) ' Z[T∨],

where Rep(T∨) is the finite dimensional representation ring of T∨ and Z[T∨] is the reg-
ular functions on T∨. Since we can tensor any element in CohT∨(X) by a finite dimen-
sional T∨ representation, KT∨(X) is a module over KT∨(pt) = Z[T∨]. Let KT∨(X)loc :=
KT∨(X) ⊗KT∨ (pt) FracKT∨(pt) denote the localized equivariant K-theory of X, where

FracKT∨(pt) denotes the fraction field of KT∨(pt).

Recall the (relative) motivic Grothendieck group GT
∨

0 (Var /X) of varieties over X is the
free abelian group generated by isomorphism classes [f : Z → X] where Z is a quasi-
projective T∨-variety and f : Z → X is a T∨-equivariant morphism modulo the usual
additivity relations

[f : Z → X] = [f : U → X] + [f : Z \ U → X]

for U ⊂ Z an open invariant subvariety.
Let y be a formal variable. The following theorem is proved by Brasselet, Schürmann

and Yokura [BSY10, Thm. 2.1] in the non-equivariant case. The equivariant case is proved
in [AMSS19, FRW21].
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Theorem 3.1. There exists a unique natural transformation

MCy : GT
∨

0 (Var /X)→ KT∨(X)[y]

satisfying the following properties:

(1) It is functorial with respect to T∨-equivariant proper morphisms of non-singular,
quasi-projective varieties.

(2) It satisfies the following normalization condition

MCy[idX : X → X] = λy(T
∗
X) :=

∑
yi[∧iT ∗X ] ∈ KT∨(X)[y].

3.2. Two bases in the localized equivariant K-theory of the flag variety. In this
section, we introduce two bases in the localized equivariant K-group of the flag variety
B = G∨/B∨.

The flag variety B has a natural action of the maximal torus T∨, and the fixed points
are in one-to-one correspondence with the Weyl group. For any w ∈ W , wB∨ is the
corresponding fixed point, and let ιw : wB∨ ↪→ B denote the inclusion of the fixed point.
For any F ∈ KT∨(B), let F|w := ι∗w(F) ∈ KT∨(wB∨) = KT∨(pt) = Z[T∨] denote the
restriction of F to the fixed point wB∨. Let TwB (resp. T ∗wB) denote the tangent (resp.
cotangent) space to B at the fixed point wB. By the localization theorem [CG09, Chapter
5], the localized equivariant K-group KT∨(B)loc has a basis {[OwB∨ ] | w ∈W}, where OwB∨
denotes the structure sheaf of the fixed point wB∨.

Recall thatX(w)◦ (resp. Y (w)◦) denotes Schubert cellsB∨wB∨/B∨ (resp. B∨,−wB∨/B∨).

Hence we have [X(w)◦ ↪→ B], [Y (w)◦ ↪→ B] ∈ GT∨0 (Var /B). Applying the motivic Chern
class transformation MCy to them, we get

MCy(X(w)◦) := MCy([X(w)◦ ↪→ B]) ∈ KT∨(B)[y],

and

MCy(Y (w)◦) := MCy([Y (w)◦ ↪→ B]) ∈ KT∨(B)[y].

Since X(id)◦ = B∨ is a point, MCy(X(id)◦) = [OB∨ ].
By [AMSS19, Proposition 7.1(b)], the localization

MCy(X(w)◦)|w = λy(T
∗
wX(w))

λ−1(T
∗
wB)

λ−1(T ∗wX(w))
∈ KT∨(pt)[y],

where T ∗wX(w) denotes the tangent space to X(w) at its smooth point wB∨, and λ−1(V ) :=∑
(−1)i[∧iV ] ∈ KT∨(pt) for any T∨ representation V . On the other hand, the MCy(X(w)◦)

is supported on X(w) ⊂ B. Therefore, the transition matrix between {MCy(X(w)◦) | w ∈
W} and the fixed point basis is upper triangular and the diagonal terms are non-zero.
Thus, {MCy(X(w)◦) | w ∈ W} forms another basis of the localized equivariant K-group
KT∨(B)loc.

Here is the example of P1.

Example 3.2. Let G∨ = SL(2,C) and let α denote the unique simple root. Then B = P1,
X(id)◦ = 0 and X(sα)◦ = P1\{0}. By definition, MCy(X(id)◦) = [O0], and MCy(X(sα)◦) =
MCy(P1)−MCy(X(id)) = λy(T

∗
P1)− [O0].

Remark 3.3. There is another natural basis, the Schubert basis, in the non-localized equi-
variant K-group KT∨(B), i.e., the structure sheaves of the Schubert varieties X(w)’s. The
transition matrix coefficients between the motivic Chern classes and the Schubert classes
are conjectured to enjoy some (sign) positivity properties, see [AMSS19]. The cohomological
analogue was conjectured by Aluffi and Mihalcea in [AM09, AM16]. The Grassmannian case



MOTIVIC CHERN CLASSES AND IWAHORI INVARIANTS OF PRINCIPAL SERIES 9

is proved by J. Huh [Huh16]. The general non-equivariant case is proved in [AMSS17], and
the proof also involves the cohomological stable basis of the cotangent bundle [Su17, MO19].

3.3. Hecke algebra action. In this section, we recall the construction of the Hecke algebra
action on KT∨(B) due to Lusztig [Lus85], and describe this action on the above two bases.

Recall the finite Hecke algebra HW (q) is generated over Z[q, q−1] by elements Tw (w ∈W )
such that TuTv = Tuv if `(uv) = `(u)+`(v), and (Tsi +1)(Tsi−q) = 0 for a simple reflection
si in W . For any simple root α∨i of G∨, recall Lα∨i := G∨ ×B∨ Cα∨i . Let P∨i be the

corresponding minimal parabolic subgroup containing B∨, and let πi denote the projection
G∨/B∨ → G∨/P∨i . The BGG operator ∂i is π∗i ◦ πi,∗. Form the following two sets of
operators in EndKT∨ (pt)[y]KT∨(B)[y]

Ti := (1 + yLα∨i )∂i − id, and T ∨i := ∂i(1 + yLα∨i )− id.

On KT∨(B), we have a non-degenerate pairing 〈−,−〉 defined by

〈F ,G〉 := χT∨(B,F ⊗ G) ∈ KT∨(pt),

where χT∨(−) denotes the T∨ character on the virtual T∨-representation
∑

i(−1)iH i(B,−).
Then we have the following theorem [AMSS19, Lus85].

Theorem 3.4. (1) The operators Ti and T ∨i are adjoint to each other, i.e., for any
F ,G ∈ KT∨(B), 〈Ti(F),G〉 = 〈F , T ∨i (G)〉.

(2) Sending Ti ∈ HW (q) to Ti (or T ∨i ), and q to −y defines an action of HW (q) on
KT∨(B)[y].

The second part of the theorem says that the operators Ti (resp. T ∨i ) satisfy the relations
in the Hecke algebra. Therefore, we can form Tw and T ∨w for any w ∈ W . The motivic
Chern classes of the Schubert cells are described by these operators in the following nice
formula.

Theorem 3.5. [AMSS19] For any w ∈W and simple root α∨i such that wsi > w, we have

Ti(MCy(X(w)◦)) = MCy(X(wsi)
◦).

In particular,
MCy(X(w)◦) = Tw−1([OB∨ ]).

The cohomological statement is proved in [AM16]. Motivated by this and Theorem 3.4(1),
we make the following definition.

Definition 3.6. Let w ∈W . The dual motivic Chern class is defined by

MC∨y (Y (w)◦) := (T ∨w0w)−1(MCy(Y (w0))) = (T ∨w0w)−1(Ow0B∨) ∈ KT∨(B)[y, y−1].

The name of this class is explained by the following theorem, which is the K-theoretic
analogue of [AMSS17, Theorem 5.7].

Theorem 3.7. [AMSS19] For any u, v ∈W ,

〈MCy(X(u)◦),MC∨y (Y (v)◦)〉 = δu,v(−y)`(u)−dimB
∏
α>0

(1 + ye−α
∨
).

Let D be the Serre duality functor on KT∨(B). I.e., for any F ∈ KT∨(B), let D(F) :=
RHomOB(F , ω•B), where ω•B = (−1)dimBL2ρ∨ is the dualizing complex of B, and 2ρ∨ is the
sum of all the positive roots in G∨. Extend D to KT∨(B)[y, y−1] by sending yi to y−i.

Then the class MC∨y (Y (w)◦) is related to the original motivic Chern class MCy(Y (w)◦)
via the following lemma.
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Lemma 3.8. For any w ∈W , we have

MC∨y (Y (w)◦) =
∏
α>0

(1 + ye−α
∨
)
D(MCy(Y (w)◦))

λy(T ∗(B))
∈ KT∨(B)loc[y, y

−1].

This lemma is quite technical. Its proof in [AMSS19] uses the Maulik–Okounkov stable
basis [MO19, Oko17] in the equivariant K-theory of the cotangent bundle of the flag variety.
Let i : B ↪→ T ∗(B) denote the natural inclusion. Then it is shown in [AMSS19, FRW21]
that the pullback of the stable basis elements coincide with the motivic Chern classes of the
Schubert cells. On the other hand, the definition of the stable basis depends on a choice of
a Weyl chamber, and stable bases for the opposite chambers are dual bases to each other.
Combining these with Theorem 3.7, we can prove the above lemma.

Finally, the Hecke algebra action on the fixed point basis is given by the following lemma.

Lemma 3.9. [AMSS19] The action of the operator T ∨i on the fixed point basis {[OwB∨ ]|w ∈
W} is given by

T ∨i ([OwB∨ ]) = − 1 + y

1− e−wα∨i
[OwB∨ ] +

1 + yewα
∨
i

1− e−wα∨i
[OwsiB∨ ].

3.4. Smoothness criterion. For the smoothness of Schubert varieties, Kumar proved the
following theorem.

Theorem 3.10 ([Kum96]). For any u ≤ w ∈W . The opposite Schubert variety Y (u) ⊂ B
is smooth at wB∨ if and only if the localization at wB∨ of the equivariant fundamental class
[Y (u)] ∈ H∗T∨(B) is given by:

[Y (u)]|w =

 ∏
β>0,u�sβw

β∨

 ∈ H∗T∨(pt) = Z[LieT∨].

We can generalize it using the motivic Chern classes in equivariant K-theory.

Theorem 3.11. [AMSS19] For any u ≤ w ∈ W . The opposite Schubert variety Y (u) is
smooth at the torus fixed point wB∨ if and only if

MCy(Y (u))|w =
∏

α>0,wsα≥u
(1 + yewα

∨
)

∏
α>0,u�wsα

(1− ewα∨).

The if direction follows from the properties of the motivic Chern classes. For the other
direction, we can specialize y = 0, take the Chern character map, and use Kumar’s theorem.

4. The proof

In this section, we outline the proof of Theorem 2.2 and Theorem 2.3. The bridge
connecting the p-adic side and the complex side is a shadow of the following well known
two geometric realizations of the affine Hecke algebra [CG09, Introduction]

KG∨×C∗(St) ' H ' Cc[I\G(F )/I],

where St is the Steinberg variety.
As before, τ is an unramified regular character of T , which determines a point in the

dual torus T∨. Let Cτ denote the evaluation representation at τ ∈ T∨ of KT∨(pt) = Z[T∨].
For any w ∈W , define

bw := (−1)dimB−`(w)
∏

α>0,wα>0

y−1 + e−wα
∨

1− ewα∨
[OwB∨ ] ∈ KT∨(B)[y, y−1].
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The coefficient in front of [OwB∨ ] is determined by the following identity

bw|w = MC∨y (Y (w)◦)|w.

In particular, for the longest element w0, bw0 = MC∨y (Y (w0)
◦).

We are now ready state the main result which connects the equivariant K-theory of B to
the Iwahori invariants in I(τ). Endow KT∨(B)[y, y−1] with the HW (q) action by using the
operators T ∨w .

Theorem 4.1. [AMSS19] There is a unique left HW (q)-module homomorphism

Ψ : KT∨(G∨/B∨)[y, y−1]⊗KT∨ (pt)[y,y−1] Cτ
∼−→ I(τ)I ,

such that:

• y 7→ −q;
• MC∨y (Y (w)◦)⊗ 1 7→ ϕw;
• bw ⊗ 1 7→ fw.

This type of relation between the equivariant K-theory of the flag variety and repre-
sentation theory of p-adic groups is also studied by Braverman, Kazhdan, and Lusztig
[BK99, Lus98]. The case of the cotangent bundle is also studied in [SZZ20]. In [SZZ20],
the authors used this connection to give an equivariant K-theoretic interpretation of the
Macdonald’s formula for the spherical function [Mac68, Cas80] and the Casselman–Shalika
formula for the spherical Whittaker function [CS80].

The proof of this theorem is quite simple. We can define the map Ψ using the first two
properties. Then using Equation (1) and Definition 3.6, we check that Ψ is a HW (q)-module
isomorphism. Finally, using the fact that fw0 = ϕw0 , bw0 = MC∨y (Y (w0)

◦), Equation (3),
Lemma 3.9 and the fact that Ψ is a HW (q)-module isomorphism, we can check the last
property.

Define the dual operator (−)∨ on KT∨(pt)[y, y−1] = Z[X∗(T∨)][y, y−1] by (eλ)∨ = e−λ

for any λ ∈ X∗(T∨) and (yi)∨ = y−i for any i ∈ Z.
The conjectures of Bump, Nakasuji, and Naruse are about the transition matrix coeffi-

cients mu,w between the two bases on the p-adic side, using Theorem 4.1 and Lemma 3.8,
we get the following geometric interpretation of it.

Proposition 4.2. For any w ≥ u ∈W , we have

mu,w =

(
MCy(Y (u))|w
MCy(Y (w)◦)|w

)∨
(τ),

where (τ) means the evaluation at τ ∈ T∨ of the rational function
MCy(Y (u))|w
MCy(Y (w)◦)|w ∈ Frac(KT∨(pt)[y]).

Notice that Y (w) is smooth at the torus fixed point wB∨. Hence, we have an explicit
formula for the denominator MCy(Y (w)◦)|w by Theorem 3.11. Finally, the factorization
conjecture (Theorem 2.2) follows from this proposition and Theorem 3.11.

For the analyticity conjecture (Theorem 2.3), we only need to prove it for mu,w because
of Equation (5) and the fact that S(x,w) ⊂ S(u,w) for any u ≤ x ≤ w. Using Proposition
4.2, Theorem 2.3 is translated into the following statement.

Proposition 4.3. For any w ≤ u ∈ W , the polynomial MCy(Y (w)◦)|u ∈ KT∨(pt)[y] is
divisible by ∏

α>0,uα>0

(1 + yeuα
∨
)

∏
α>0,w�usα<u

(1− euα∨).
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This geometric property about motivic Chern classes can be easily proved using a GKM
type argument, see [AMSS19, Theorem 7.4].
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